html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/pull/5876#issuecomment-1010114336,https://api.github.com/repos/pydata/xarray/issues/5876,1010114336,IC_kwDOAMm_X848NR8g,6628425,2022-01-11T16:06:33Z,2022-01-11T16:06:33Z,MEMBER,Thanks @pierreloicq!,"{""total_count"": 3, ""+1"": 1, ""-1"": 0, ""laugh"": 0, ""hooray"": 1, ""confused"": 0, ""heart"": 1, ""rocket"": 0, ""eyes"": 0}",,1030492705
https://github.com/pydata/xarray/pull/5876#issuecomment-1008312049,https://api.github.com/repos/pydata/xarray/issues/5876,1008312049,IC_kwDOAMm_X848GZ7x,6628425,2022-01-09T14:51:33Z,2022-01-09T17:53:08Z,MEMBER,"@dcherian @mathause @andersy005 given a DataArray of times with missing values, do you have any thoughts on what the preferred result of `da.dt.season` would be?
One option would be to return `np.nan` in place of the missing time values:
```
In [3]: times = [np.datetime64(""NaT""), np.datetime64(""2000-01-01"")]
In [4]: da = xr.DataArray(times, dims=[""x""])
In [5]: da.dt.season
Out[5]:
array([nan, 'DJF'], dtype=object)
Dimensions without coordinates: x
```
This would be somewhat in line with how pandas handles this in other contexts (e.g. https://github.com/pydata/xarray/pull/5876#discussion_r734447120). But this sort of awkwardly returns a DataArray of mixed types. Another option, and this is how @pierreloicq implemented things originally, would be to simply return a string label for missing values, e.g.
```
In [5]: da.dt.season
Out[5]:
array(['nan', 'DJF'], dtype='