html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue https://github.com/pydata/xarray/issues/1068#issuecomment-966198058,https://api.github.com/repos/pydata/xarray/issues/1068,966198058,IC_kwDOAMm_X845lwMq,29051639,2021-11-11T10:46:16Z,2021-11-11T10:46:16Z,CONTRIBUTOR,Unfortunately not @zjans ,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,186169975 https://github.com/pydata/xarray/issues/1068#issuecomment-864477138,https://api.github.com/repos/pydata/xarray/issues/1068,864477138,MDEyOklzc3VlQ29tbWVudDg2NDQ3NzEzOA==,29051639,2021-06-19T23:51:09Z,2021-06-19T23:51:09Z,CONTRIBUTOR,"I'm also getting the same error when running `xr.open_dataset(store)` even though I have accepted the EULA. Has anyone had success solving this? I'm using pydap==3.2.2 and xarray==0.18.0, any help would be much appreciated! ```python import xarray as xr from pydap.client import open_url from pydap.cas.urs import setup_session username = ""my_username"" password= ""my_password"" url = 'https://goldsmr4.gesdisc.eosdis.nasa.gov/opendap/MERRA2/M2T1NXSLV.5.12.4/2016/06/MERRA2_400.tavg1_2d_slv_Nx.20160601.nc4' session = setup_session(username, password, check_url=url) pydap_ds = open_url(url, session=session) store = xr.backends.PydapDataStore(pydap_ds) ds = xr.open_dataset(store) ``` ```html HTTPError: 302 Found 302 Found

Found

The document has moved here.

```","{""total_count"": 1, ""+1"": 1, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,186169975 https://github.com/pydata/xarray/pull/4659#issuecomment-797555413,https://api.github.com/repos/pydata/xarray/issues/4659,797555413,MDEyOklzc3VlQ29tbWVudDc5NzU1NTQxMw==,29051639,2021-03-12T15:17:16Z,2021-03-12T15:17:16Z,CONTRIBUTOR,"From what I can gather there are more serious back-end considerations needed before this can be progressed. Personally, I've been monkey-patching this code in which has solved my particular use-case, hopefully it's helpful for yours. ```python import xarray as xr import pandas as pd import numpy as np import dask.dataframe as dd from dask.distributed import Client import numcodecs from types import ModuleType from datetime import timedelta from dask.dataframe.core import DataFrame as ddf from numbers import Number from typing import Any, Union, Sequence, Tuple, Mapping, Hashable, Dict, Optional, Set from xarray.core import dtypes, groupby, rolling, resample, weighted, utils# from xarray.core.accessor_dt import CombinedDatetimelikeAccessor from xarray.core.variable import Variable, IndexVariable from xarray.core.merge import PANDAS_TYPES from xarray.core.variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES, IS_NEP18_ACTIVE, _maybe_wrap_data, _possibly_convert_objects from xarray.core.dataarray import _check_data_shape, _infer_coords_and_dims, _extract_indexes_from_coords from xarray.core.common import ImplementsDatasetReduce, DataWithCoords def as_compatible_data(data, fastpath=False): """"""Prepare and wrap data to put in a Variable. - If data does not have the necessary attributes, convert it to ndarray. - If data has dtype=datetime64, ensure that it has ns precision. If it's a pandas.Timestamp, convert it to datetime64. - If data is already a pandas or xarray object (other than an Index), just use the values. Finally, wrap it up with an adapter if necessary. """""" if fastpath and getattr(data, ""ndim"", 0) > 0: # can't use fastpath (yet) for scalars return _maybe_wrap_data(data) # *** Start of monkey-patch changes *** if isinstance(data, (ddf,)): return data.to_dask_array(lengths=True) # *** End of monkey-patch changes *** if isinstance(data, Variable): return data.data if isinstance(data, NON_NUMPY_SUPPORTED_ARRAY_TYPES): return _maybe_wrap_data(data) if isinstance(data, tuple): data = utils.to_0d_object_array(data) if isinstance(data, pd.Timestamp): # TODO: convert, handle datetime objects, too data = np.datetime64(data.value, ""ns"") if isinstance(data, timedelta): data = np.timedelta64(getattr(data, ""value"", data), ""ns"") # we don't want nested self-described arrays data = getattr(data, ""values"", data) if isinstance(data, np.ma.MaskedArray): mask = np.ma.getmaskarray(data) if mask.any(): dtype, fill_value = dtypes.maybe_promote(data.dtype) data = np.asarray(data, dtype=dtype) data[mask] = fill_value else: data = np.asarray(data) if not isinstance(data, np.ndarray): if hasattr(data, ""__array_function__""): if IS_NEP18_ACTIVE: return data else: raise TypeError( ""Got an NumPy-like array type providing the "" ""__array_function__ protocol but NEP18 is not enabled. "" ""Check that numpy >= v1.16 and that the environment "" 'variable ""NUMPY_EXPERIMENTAL_ARRAY_FUNCTION"" is set to ' '""1""' ) # validate whether the data is valid data types. data = np.asarray(data) if isinstance(data, np.ndarray): if data.dtype.kind == ""O"": data = _possibly_convert_objects(data) elif data.dtype.kind == ""M"": data = _possibly_convert_objects(data) elif data.dtype.kind == ""m"": data = _possibly_convert_objects(data) return _maybe_wrap_data(data) xr.core.variable.as_compatible_data = as_compatible_data class DataArray(xr.core.dataarray.DataArray): _cache: Dict[str, Any] _coords: Dict[Any, Variable] _indexes: Optional[Dict[Hashable, pd.Index]] _name: Optional[Hashable] _variable: Variable __slots__ = ( ""_cache"", ""_coords"", ""_file_obj"", ""_indexes"", ""_name"", ""_variable"" ) _groupby_cls = groupby.DataArrayGroupBy _rolling_cls = rolling.DataArrayRolling _coarsen_cls = rolling.DataArrayCoarsen _resample_cls = resample.DataArrayResample _weighted_cls = weighted.DataArrayWeighted dt = utils.UncachedAccessor(CombinedDatetimelikeAccessor) def __init__( self, data: Any = dtypes.NA, coords: Union[Sequence[Tuple], Mapping[Hashable, Any], None] = None, dims: Union[Hashable, Sequence[Hashable], None] = None, name: Hashable = None, attrs: Mapping = None, # internal parameters indexes: Dict[Hashable, pd.Index] = None, fastpath: bool = False, ): if fastpath: variable = data assert dims is None assert attrs is None else: # try to fill in arguments from data if they weren't supplied if coords is None: if isinstance(data, DataArray): coords = data.coords elif isinstance(data, pd.Series): coords = [data.index] elif isinstance(data, pd.DataFrame): coords = [data.index, data.columns] elif isinstance(data, (pd.Index, IndexVariable)): coords = [data] elif isinstance(data, pdcompat.Panel): coords = [data.items, data.major_axis, data.minor_axis] if dims is None: dims = getattr(data, ""dims"", getattr(coords, ""dims"", None)) if name is None: name = getattr(data, ""name"", None) if attrs is None and not isinstance(data, PANDAS_TYPES): attrs = getattr(data, ""attrs"", None) # *** Start of monkey-patch changes *** def compute_delayed_tuple_elements(tuple_): tuple_ = tuple( [ elem.compute() if hasattr(elem, ""compute"") else elem for elem in tuple_ ] ) return tuple_ shape = compute_delayed_tuple_elements(data.shape) coords = compute_delayed_tuple_elements(coords) data = _check_data_shape(data, coords, dims) data = as_compatible_data(data) coords, dims = _infer_coords_and_dims(shape, coords, dims) # *** End of monkey-patch changes *** variable = Variable(dims, data, attrs, fastpath=True) indexes = dict( _extract_indexes_from_coords(coords) ) # needed for to_dataset # These fully describe a DataArray self._variable = variable assert isinstance(coords, dict) self._coords = coords self._name = name # TODO(shoyer): document this argument, once it becomes part of the # public interface. self._indexes = indexes self._file_obj = None @classmethod def from_dask_dataframe(cls, ddf, index_name: str = """", columns_name: str = """"): """"""Convert a pandas.DataFrame into an xarray.DataArray This method will produce a DataArray from a Dask DataFrame. Dimensions are loaded into memory but the data itself remains a Dask Array. The dataframe you pass can contain only one data-type. Parameters ---------- ddf: DataFrame Dask DataFrame from which to copy data and indices. index_name: str Name of the dimension that will be created from the index columns_name: str Name of the dimension that will be created from the columns Returns ------- New DataArray. See also -------- xarray.DataSet.from_dataframe xarray.DataArray.from_series pandas.DataFrame.to_xarray """""" assert len(set(ddf.dtypes)) == 1, ""Each variable can include only one data-type"" def extract_dim_name(df, dim=""index""): if getattr(ddf, dim).name is None: getattr(ddf, dim).name = dim dim_name = getattr(ddf, dim).name return dim_name if index_name == """": index_name = extract_dim_name(ddf, ""index"") if columns_name == """": columns_name = extract_dim_name(ddf, ""columns"") dims = dict.fromkeys([index_name, columns_name], df.shape) da = cls(ddf, coords=[ddf.index, ddf.columns], dims=dims) return da xr.core.dataarray.DataArray = DataArray xr.DataArray = DataArray def _maybe_chunk( name, var, chunks=None, token=None, lock=None, name_prefix=""xarray-"", overwrite_encoded_chunks=False, ): from dask.base import tokenize if chunks is not None: chunks = {dim: chunks[dim] for dim in var.dims if dim in chunks} if var.ndim: # when rechunking by different amounts, make sure dask names change # by provinding chunks as an input to tokenize. # subtle bugs result otherwise. see GH3350 token2 = tokenize(name, token if token else var._data, chunks) name2 = f""{name_prefix}{name}-{token2}"" var = var.chunk(chunks, name=name2, lock=lock) if overwrite_encoded_chunks and var.chunks is not None: var.encoding[""chunks""] = tuple(x[0] for x in var.chunks) return var else: return var class Dataset(xr.Dataset): """"""A multi-dimensional, in memory, array database. A dataset resembles an in-memory representation of a NetCDF file, and consists of variables, coordinates and attributes which together form a self describing dataset. Dataset implements the mapping interface with keys given by variable names and values given by DataArray objects for each variable name. One dimensional variables with name equal to their dimension are index coordinates used for label based indexing. To load data from a file or file-like object, use the `open_dataset` function. Parameters ---------- data_vars : dict-like, optional A mapping from variable names to :py:class:`~xarray.DataArray` objects, :py:class:`~xarray.Variable` objects or to tuples of the form ``(dims, data[, attrs])`` which can be used as arguments to create a new ``Variable``. Each dimension must have the same length in all variables in which it appears. The following notations are accepted: - mapping {var name: DataArray} - mapping {var name: Variable} - mapping {var name: (dimension name, array-like)} - mapping {var name: (tuple of dimension names, array-like)} - mapping {dimension name: array-like} (it will be automatically moved to coords, see below) Each dimension must have the same length in all variables in which it appears. coords : dict-like, optional Another mapping in similar form as the `data_vars` argument, except the each item is saved on the dataset as a ""coordinate"". These variables have an associated meaning: they describe constant/fixed/independent quantities, unlike the varying/measured/dependent quantities that belong in `variables`. Coordinates values may be given by 1-dimensional arrays or scalars, in which case `dims` do not need to be supplied: 1D arrays will be assumed to give index values along the dimension with the same name. The following notations are accepted: - mapping {coord name: DataArray} - mapping {coord name: Variable} - mapping {coord name: (dimension name, array-like)} - mapping {coord name: (tuple of dimension names, array-like)} - mapping {dimension name: array-like} (the dimension name is implicitly set to be the same as the coord name) The last notation implies that the coord name is the same as the dimension name. attrs : dict-like, optional Global attributes to save on this dataset. Examples -------- Create data: >>> np.random.seed(0) >>> temperature = 15 + 8 * np.random.randn(2, 2, 3) >>> precipitation = 10 * np.random.rand(2, 2, 3) >>> lon = [[-99.83, -99.32], [-99.79, -99.23]] >>> lat = [[42.25, 42.21], [42.63, 42.59]] >>> time = pd.date_range(""2014-09-06"", periods=3) >>> reference_time = pd.Timestamp(""2014-09-05"") Initialize a dataset with multiple dimensions: >>> ds = xr.Dataset( ... data_vars=dict( ... temperature=([""x"", ""y"", ""time""], temperature), ... precipitation=([""x"", ""y"", ""time""], precipitation), ... ), ... coords=dict( ... lon=([""x"", ""y""], lon), ... lat=([""x"", ""y""], lat), ... time=time, ... reference_time=reference_time, ... ), ... attrs=dict(description=""Weather related data.""), ... ) >>> ds Dimensions: (time: 3, x: 2, y: 2) Coordinates: lon (x, y) float64 -99.83 -99.32 -99.79 -99.23 lat (x, y) float64 42.25 42.21 42.63 42.59 * time (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08 reference_time datetime64[ns] 2014-09-05 Dimensions without coordinates: x, y Data variables: temperature (x, y, time) float64 29.11 18.2 22.83 ... 18.28 16.15 26.63 precipitation (x, y, time) float64 5.68 9.256 0.7104 ... 7.992 4.615 7.805 Attributes: description: Weather related data. Find out where the coldest temperature was and what values the other variables had: >>> ds.isel(ds.temperature.argmin(...)) Dimensions: () Coordinates: lon float64 -99.32 lat float64 42.21 time datetime64[ns] 2014-09-08 reference_time datetime64[ns] 2014-09-05 Data variables: temperature float64 7.182 precipitation float64 8.326 Attributes: description: Weather related data. """""" __slots__ = ['foo'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def chunk( self, chunks: Union[None, Number, str, Mapping[Hashable, Union[None, Number, str, Tuple[Number, ...]]],] = None, name_prefix: str = ""xarray-"", token: str = None, lock: bool = False, ) -> ""Dataset"": """"""Coerce all arrays in this dataset into dask arrays with the given chunks. Non-dask arrays in this dataset will be converted to dask arrays. Dask arrays will be rechunked to the given chunk sizes. If neither chunks is not provided for one or more dimensions, chunk sizes along that dimension will not be updated; non-dask arrays will be converted into dask arrays with a single block. Parameters ---------- chunks : int, 'auto' or mapping, optional Chunk sizes along each dimension, e.g., ``5`` or ``{""x"": 5, ""y"": 5}``. name_prefix : str, optional Prefix for the name of any new dask arrays. token : str, optional Token uniquely identifying this dataset. lock : optional Passed on to :py:func:`dask.array.from_array`, if the array is not already as dask array. Returns ------- chunked : xarray.Dataset """""" if isinstance(chunks, (Number, str)): chunks = dict.fromkeys(self.dims, chunks) if isinstance(chunks, (tuple, list)): chunks = dict(zip(self.dims, chunks)) if chunks is not None: bad_dims = chunks.keys() - self.dims.keys() if bad_dims: raise ValueError(""some chunks keys are not dimensions on this "" ""object: %s"" % bad_dims) variables = {k: _maybe_chunk(k, v, chunks, token, lock, name_prefix) for k, v in self.variables.items()} return self._replace(variables) xr.core.dataarray.Dataset = Dataset xr.Dataset = Dataset ```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,758606082 https://github.com/pydata/xarray/pull/4659#issuecomment-740032261,https://api.github.com/repos/pydata/xarray/issues/4659,740032261,MDEyOklzc3VlQ29tbWVudDc0MDAzMjI2MQ==,29051639,2020-12-07T16:36:36Z,2020-12-07T16:36:36Z,CONTRIBUTOR,"I've added `dask_dataframe_type = (dask.dataframe.core.DataFrame,)` to pycompat but now see: `ImportError: cannot import name 'dask_dataframe_type'` despite it being in there","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,758606082 https://github.com/pydata/xarray/pull/4659#issuecomment-740020080,https://api.github.com/repos/pydata/xarray/issues/4659,740020080,MDEyOklzc3VlQ29tbWVudDc0MDAyMDA4MA==,29051639,2020-12-07T16:17:25Z,2020-12-07T16:17:25Z,CONTRIBUTOR,"That makes sense, thanks @keewis ","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,758606082 https://github.com/pydata/xarray/pull/4659#issuecomment-740002632,https://api.github.com/repos/pydata/xarray/issues/4659,740002632,MDEyOklzc3VlQ29tbWVudDc0MDAwMjYzMg==,29051639,2020-12-07T15:49:00Z,2020-12-07T15:49:00Z,CONTRIBUTOR,"Thanks, yes I need to load the library for type-hinting and type checks. When you say `dask_compat` is that the same as `dask_array_compat`? How would I use them instead of Dask, could I use say from `dask_compat.dataframe.core import DataFrame as ddf` instead of `from dask.dataframe.core import DataFrame as ddf`?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,758606082 https://github.com/pydata/xarray/issues/3929#issuecomment-739991914,https://api.github.com/repos/pydata/xarray/issues/3929,739991914,MDEyOklzc3VlQ29tbWVudDczOTk5MTkxNA==,29051639,2020-12-07T15:32:01Z,2020-12-07T15:32:01Z,CONTRIBUTOR,I've added a [PR](https://github.com/pydata/xarray/pull/4659) for the new feature but it's currently failing tests as the test-suite doesn't seem to have Dask installed. Any advice on how to get this PR prepared for merging would be appreciated.,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,593029940 https://github.com/pydata/xarray/pull/4659#issuecomment-739988806,https://api.github.com/repos/pydata/xarray/issues/4659,739988806,MDEyOklzc3VlQ29tbWVudDczOTk4ODgwNg==,29051639,2020-12-07T15:27:10Z,2020-12-07T15:27:10Z,CONTRIBUTOR,"During testing I'm currently encountering the issue: `ModuleNotFoundError: No module named 'dask'` How should testing of dask DataArrays be approached?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,758606082 https://github.com/pydata/xarray/issues/3929#issuecomment-739904265,https://api.github.com/repos/pydata/xarray/issues/3929,739904265,MDEyOklzc3VlQ29tbWVudDczOTkwNDI2NQ==,29051639,2020-12-07T13:01:57Z,2020-12-07T13:02:20Z,CONTRIBUTOR,"One of the things I was hoping to include in my approach is the preservation of the column dimension names, however if I was to use `Dataset.to_array` it would just be called variable. This is pretty minor though and a wrapper could be used to get around it. Thanks for the advice @shoyer, I reached a similar opinion and so have been working on the dim compute route. The issue is that a Dask array's shape uses np.nan for uncomputed dimensions, rather than leaving a delayed object like the Dask dataframe's shape. I looked into returning the dask dataframe rather than dask array but this didn't feel like it fit with the rest of the code and produced another issue as dask dataframes don't have a dtype attribute. I'll continue to look into alternatives.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,593029940 https://github.com/pydata/xarray/pull/4653#issuecomment-739338154,https://api.github.com/repos/pydata/xarray/issues/4653,739338154,MDEyOklzc3VlQ29tbWVudDczOTMzODE1NA==,29051639,2020-12-05T19:18:10Z,2020-12-05T19:18:10Z,CONTRIBUTOR,Nothing like a transient error to keep everyone on their toes. Thanks again!,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,757751542 https://github.com/pydata/xarray/pull/4653#issuecomment-739336219,https://api.github.com/repos/pydata/xarray/issues/4653,739336219,MDEyOklzc3VlQ29tbWVudDczOTMzNjIxOQ==,29051639,2020-12-05T19:10:27Z,2020-12-05T19:10:27Z,CONTRIBUTOR,"Thanks @dcherian, out of interest what would I have had to have done to remove that test failure?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,757751542 https://github.com/pydata/xarray/issues/3929#issuecomment-739334281,https://api.github.com/repos/pydata/xarray/issues/3929,739334281,MDEyOklzc3VlQ29tbWVudDczOTMzNDI4MQ==,29051639,2020-12-05T18:52:49Z,2020-12-05T18:52:49Z,CONTRIBUTOR,"For context this is the function I'm using to convert the Dask DataFrame to a DataArray. ```python def from_dask_dataframe(df, index_name=None, columns_name=None): def extract_dim_name(df, dim='index'): if getattr(df, dim).name is None: getattr(df, dim).name = dim dim_name = getattr(df, dim).name return dim_name if index_name is None: index_name = extract_dim_name(df, 'index') if columns_name is None: columns_name = extract_dim_name(df, 'columns') da = xr.DataArray(df, coords=[df.index, df.columns], dims=[index_name, columns_name]) return da df.index.name = 'datetime' df.columns.name = 'fueltypes' da = from_dask_dataframe(df) ``` I'm also conscious that my question is different to @raybellwaves' as they were asking about Dataset creation and I'm interested in creating a DataArray which requires different functionality. I'm assuming this is the correct place to post though as @keewis closed my issue and linked to this one.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,593029940 https://github.com/pydata/xarray/issues/4650#issuecomment-739330830,https://api.github.com/repos/pydata/xarray/issues/4650,739330830,MDEyOklzc3VlQ29tbWVudDczOTMzMDgzMA==,29051639,2020-12-05T18:23:10Z,2020-12-05T18:23:10Z,CONTRIBUTOR,Have started to implement this but will continue the discussion in [3929](https://github.com/pydata/xarray/issues/3929#issuecomment-739330558),"{""total_count"": 1, ""+1"": 1, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,757660307 https://github.com/pydata/xarray/issues/3929#issuecomment-739330558,https://api.github.com/repos/pydata/xarray/issues/3929,739330558,MDEyOklzc3VlQ29tbWVudDczOTMzMDU1OA==,29051639,2020-12-05T18:20:33Z,2020-12-05T18:20:33Z,CONTRIBUTOR,"I've been trying to implement this and have managed to create a `xarray.core.dataarray.DataArray` object from a dask dataframe. The issue I'm encountering is that whilst I've enabled it to pass the coords and dims checks (by computing any elements in the shape or coords tuples with `.compute`), the variable that is assigned to `self._variable` still has an NaN in the shape. The modifications I've made so far are adding the following above line 400 in [dataarray.py](https://github.com/pydata/xarray/blob/master/xarray/core/dataarray.py): ```python shape = tuple([ dim_size.compute() if hasattr(dim_size, 'compute') else dim_size for dim_size in data.shape ]) coords = tuple([ coord.compute() if hasattr(coord, 'compute') else coord for coord in coords ]) ``` and on line 403 by replacing `data.shape` with `shape` that was created in the previous step. The issue I have is that when I then want to use the DataArray and do something like `da.sel(datetime='2020-01-01')` I get the error: ```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) in ----> 1 da.sel(datetime='2020') ~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataarray.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 1219 1220 """""" -> 1221 ds = self._to_temp_dataset().sel( 1222 indexers=indexers, 1223 drop=drop, ~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataarray.py in _to_temp_dataset(self) 499 500 def _to_temp_dataset(self) -> Dataset: --> 501 return self._to_dataset_whole(name=_THIS_ARRAY, shallow_copy=False) 502 503 def _from_temp_dataset( ~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataarray.py in _to_dataset_whole(self, name, shallow_copy) 551 552 coord_names = set(self._coords) --> 553 dataset = Dataset._construct_direct(variables, coord_names, indexes=indexes) 554 return dataset 555 ~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataset.py in _construct_direct(cls, variables, coord_names, dims, attrs, indexes, encoding, file_obj) 959 """""" 960 if dims is None: --> 961 dims = calculate_dimensions(variables) 962 obj = object.__new__(cls) 963 obj._variables = variables ~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataset.py in calculate_dimensions(variables) 207 ""conflicting sizes for dimension %r: "" 208 ""length %s on %r and length %s on %r"" --> 209 % (dim, size, k, dims[dim], last_used[dim]) 210 ) 211 return dims ValueError: conflicting sizes for dimension 'datetime': length nan on and length 90386 on 'datetime' ``` This occurs due to the construction of `Variable(dims, data, attrs, fastpath=True)` on line 404, which converts the data to a numpy array on line 244 of [variable.py](https://github.com/pydata/xarray/blob/master/xarray/core/variable.py). I'm assuming there's an alternative way to construct `Variable` that is dask friendly but I couldn't find anything searching around, including areas that are using dask like open_dataset with chunks. Any advice on how to get around this would be much appreciated!","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,593029940 https://github.com/pydata/xarray/issues/4650#issuecomment-739322106,https://api.github.com/repos/pydata/xarray/issues/4650,739322106,MDEyOklzc3VlQ29tbWVudDczOTMyMjEwNg==,29051639,2020-12-05T17:09:23Z,2020-12-05T17:09:23Z,CONTRIBUTOR,"Thanks, I saw [dask/dask#6058](https://github.com/dask/dask/issues/6058) but missed [#3929](https://github.com/pydata/xarray/issues/3929). If I'm understanding you correctly there should be no problem passing a dask array for the data parameters its just the dims/coords. If the `_infer_coords_and_dims` method on DataArrays was adapted to check for any dask.delayed elements and compute them would that enable this functionality or are there additional blockers? Thanks for your help with this.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,757660307