html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/3868#issuecomment-625109242,https://api.github.com/repos/pydata/xarray/issues/3868,625109242,MDEyOklzc3VlQ29tbWVudDYyNTEwOTI0Mg==,13190237,2020-05-07T08:27:26Z,2020-05-07T08:27:26Z,CONTRIBUTOR,"Thanks for implementing this! This is a feature, that we will be using for sure! Mostly with indices of type 1 which, in many cases, can easily be extrapolated. Having this as a default or a switch to enable extrapolation where possible would help a lot!
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,584461380
https://github.com/pydata/xarray/pull/4022#issuecomment-623607232,https://api.github.com/repos/pydata/xarray/issues/4022,623607232,MDEyOklzc3VlQ29tbWVudDYyMzYwNzIzMg==,13190237,2020-05-04T17:45:40Z,2020-05-04T17:45:40Z,CONTRIBUTOR,"Thanks @mathause , this works for me. Also with a change of dtype in func, as long as ""output_dtypes"" is set correctly.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,611437250
https://github.com/pydata/xarray/issues/3297#issuecomment-529945663,https://api.github.com/repos/pydata/xarray/issues/3297,529945663,MDEyOklzc3VlQ29tbWVudDUyOTk0NTY2Mw==,13190237,2019-09-10T13:52:59Z,2019-09-10T13:52:59Z,CONTRIBUTOR,"I am in the exact same situation. @DerWeh with the current master you can do
```
da.to_netcdf(""complex.nc"", engine=""h5netcdf"", invalid_netcdf=True)
```
which works for me until there is engine=""hdf5"" or may be a method `da.to_hdf()`?","{""total_count"": 2, ""+1"": 2, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,491215043
https://github.com/pydata/xarray/issues/2511#issuecomment-525634152,https://api.github.com/repos/pydata/xarray/issues/2511,525634152,MDEyOklzc3VlQ29tbWVudDUyNTYzNDE1Mg==,13190237,2019-08-28T08:12:13Z,2019-08-28T08:12:13Z,CONTRIBUTOR,"I think the problem is somewhere here:
https://github.com/pydata/xarray/blob/aaeea6250b89e3605ee1d1a160ad50d6ed657c7e/xarray/core/utils.py#L85-L103
I don't think `pandas.Index` can hold lazy arrays. Could there be a way around exploiting `dask.dataframe` indexing methods?","{""total_count"": 1, ""+1"": 1, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,374025325
https://github.com/pydata/xarray/pull/3244#issuecomment-525404314,https://api.github.com/repos/pydata/xarray/issues/3244,525404314,MDEyOklzc3VlQ29tbWVudDUyNTQwNDMxNA==,13190237,2019-08-27T17:31:41Z,2019-08-27T17:31:41Z,CONTRIBUTOR,Thanks guys!,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,484212164
https://github.com/pydata/xarray/pull/3244#issuecomment-525365481,https://api.github.com/repos/pydata/xarray/issues/3244,525365481,MDEyOklzc3VlQ29tbWVudDUyNTM2NTQ4MQ==,13190237,2019-08-27T15:53:46Z,2019-08-27T15:53:46Z,CONTRIBUTOR,"May be this is a stupid question: What's the best way to resolve this conflict, and get the checks to run? Should I do a merge master? Or rebase (seems somewhat of a pain to get the remote up to date)? Thanks for the advice!","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,484212164
https://github.com/pydata/xarray/pull/3244#issuecomment-524277968,https://api.github.com/repos/pydata/xarray/issues/3244,524277968,MDEyOklzc3VlQ29tbWVudDUyNDI3Nzk2OA==,13190237,2019-08-23T11:19:45Z,2019-08-23T11:21:03Z,CONTRIBUTOR,"Guys, if you could have a look at the tests I modified (a4c3622) to check how many times things get computed. I tried to integrate it with the existing tests. The number of count check could possibly be applied to some other tests as well. May be there is a smarter way of doing this?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,484212164
https://github.com/pydata/xarray/pull/3244#issuecomment-524078960,https://api.github.com/repos/pydata/xarray/issues/3244,524078960,MDEyOklzc3VlQ29tbWVudDUyNDA3ODk2MA==,13190237,2019-08-22T21:10:27Z,2019-08-22T21:10:27Z,CONTRIBUTOR,"Thanks @max-sixty! Sure, I'll do this tomorrow then.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,484212164
https://github.com/pydata/xarray/issues/3237#issuecomment-524075569,https://api.github.com/repos/pydata/xarray/issues/3237,524075569,MDEyOklzc3VlQ29tbWVudDUyNDA3NTU2OQ==,13190237,2019-08-22T21:00:34Z,2019-08-22T21:00:34Z,CONTRIBUTOR,"Thanks @shoyer. Cool, then this was easier than I expected. I added the patch and nanargmax/min to the nputils in #3244. What do you think?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,483280810
https://github.com/pydata/xarray/pull/3221#issuecomment-524056506,https://api.github.com/repos/pydata/xarray/issues/3221,524056506,MDEyOklzc3VlQ29tbWVudDUyNDA1NjUwNg==,13190237,2019-08-22T20:04:29Z,2019-08-22T20:04:29Z,CONTRIBUTOR,"Thanks @dcherian and @shoyer for the review and advice! It seems the docs build and the checks are fine now. One more thing, as this is my first PR to xarray: Should I merge/rebase master into the allow_invalid_netcdf branch, or will you guys take it from this point?","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,481110823
https://github.com/pydata/xarray/issues/3237#issuecomment-523952983,https://api.github.com/repos/pydata/xarray/issues/3237,523952983,MDEyOklzc3VlQ29tbWVudDUyMzk1Mjk4Mw==,13190237,2019-08-22T15:22:33Z,2019-08-22T15:22:33Z,CONTRIBUTOR,"Those little changes do solve the MCVE, but break at least one test. I don't have enough of an understanding of the (nan)ops logic in xarray to get around the issue. But may be this helps:
#### The change
```
diff --git a/xarray/core/nanops.py b/xarray/core/nanops.py
index 9ba4eae2..784a1d01 100644
--- a/xarray/core/nanops.py
+++ b/xarray/core/nanops.py
@@ -91,17 +91,9 @@ def nanargmin(a, axis=None):
fill_value = dtypes.get_pos_infinity(a.dtype)
if a.dtype.kind == ""O"":
return _nan_argminmax_object(""argmin"", fill_value, a, axis=axis)
- a, mask = _replace_nan(a, fill_value)
- if isinstance(a, dask_array_type):
- res = dask_array.argmin(a, axis=axis)
- else:
- res = np.argmin(a, axis=axis)
- if mask is not None:
- mask = mask.all(axis=axis)
- if mask.any():
- raise ValueError(""All-NaN slice encountered"")
- return res
+ module = dask_array if isinstance(a, dask_array_type) else nputils
+ return module.nanargmin(a, axis=axis)
def nanargmax(a, axis=None):
@@ -109,17 +101,8 @@ def nanargmax(a, axis=None):
if a.dtype.kind == ""O"":
return _nan_argminmax_object(""argmax"", fill_value, a, axis=axis)
- a, mask = _replace_nan(a, fill_value)
- if isinstance(a, dask_array_type):
- res = dask_array.argmax(a, axis=axis)
- else:
- res = np.argmax(a, axis=axis)
-
- if mask is not None:
- mask = mask.all(axis=axis)
- if mask.any():
- raise ValueError(""All-NaN slice encountered"")
- return res
+ module = dask_array if isinstance(a, dask_array_type) else nputils
+ return module.nanargmax(a, axis=axis)
def nansum(a, axis=None, dtype=None, out=None, min_count=None):
```
#### The failing test
``` python
...
___________ TestVariable.test_reduce ________________
...
def f(values, axis=None, skipna=None, **kwargs):
if kwargs.pop(""out"", None) is not None:
raise TypeError(""`out` is not valid for {}"".format(name))
values = asarray(values)
if coerce_strings and values.dtype.kind in ""SU"":
values = values.astype(object)
func = None
if skipna or (skipna is None and values.dtype.kind in ""cfO""):
nanname = ""nan"" + name
func = getattr(nanops, nanname)
else:
func = _dask_or_eager_func(name)
try:
return func(values, axis=axis, **kwargs)
except AttributeError:
if isinstance(values, dask_array_type):
try: # dask/dask#3133 dask sometimes needs dtype argument
# if func does not accept dtype, then raises TypeError
return func(values, axis=axis, dtype=values.dtype, **kwargs)
except (AttributeError, TypeError):
msg = ""%s is not yet implemented on dask arrays"" % name
else:
msg = (
""%s is not available with skipna=False with the ""
""installed version of numpy; upgrade to numpy 1.12 ""
""or newer to use skipna=True or skipna=None"" % name
)
> raise NotImplementedError(msg)
E NotImplementedError: argmax is not available with skipna=False with the installed version of numpy; upgrade to numpy 1.12 or newer to use skipna=True or skipna=None
...
```
Note: I habe numpy 1.17 instaleed so the error msg here seems missleading.
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,483280810
https://github.com/pydata/xarray/pull/3221#issuecomment-523819932,https://api.github.com/repos/pydata/xarray/issues/3221,523819932,MDEyOklzc3VlQ29tbWVudDUyMzgxOTkzMg==,13190237,2019-08-22T09:08:28Z,2019-08-22T09:08:28Z,CONTRIBUTOR,"Hey guys, I'd like to move this forward, but the doc build failed with the message below.
- Do I need to add something specific to make the docs build?
- Do I need to do anything else to get this PR merged?
Thanks!
``` python
>>>-------------------------------------------------------------------------
Exception in /home/vsts/work/1/s/doc/io.rst at block ending on line 388
Specify :okexcept: as an option in the ipython:: block to suppress this message
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
in
----> 1 da.to_netcdf(""complex.nc"", engine=""h5netcdf"", invalid_netcdf=True)
~/work/1/s/xarray/core/dataarray.py in to_netcdf(self, *args, **kwargs)
2214 dataset = self.to_dataset()
2215
-> 2216 return dataset.to_netcdf(*args, **kwargs)
2217
2218 def to_dict(self, data: bool = True) -> dict:
~/work/1/s/xarray/core/dataset.py in to_netcdf(self, path, mode, format, group, engine, encoding, unlimited_dims, compute, invalid_netcdf)
1519 unlimited_dims=unlimited_dims,
1520 compute=compute,
-> 1521 invalid_netcdf=invalid_netcdf,
1522 )
1523
~/work/1/s/xarray/backends/api.py in to_netcdf(dataset, path_or_file, mode, format, group, engine, encoding, unlimited_dims, compute, multifile, invalid_netcdf)
1052 ""unrecognized option 'invalid_netcdf' for engine %s"" % engine
1053 )
-> 1054 store = store_open(target, mode, format, group, **kwargs)
1055
1056 if unlimited_dims is None:
~/work/1/s/xarray/backends/h5netcdf_.py in __init__(self, filename, mode, format, group, lock, autoclose, invalid_netcdf)
81 invalid_netcdf=None,
82 ):
---> 83 import h5netcdf
84
85 if format not in [None, ""NETCDF4""]:
ModuleNotFoundError: No module named 'h5netcdf'
<<<-------------------------------------------------------------------------
/home/vsts/work/1/s/xarray/core/dataarray.py:docstring of xarray.DataArray.integrate:12: WARNING: Unexpected indentation.
/home/vsts/work/1/s/xarray/core/dataarray.py:docstring of xarray.DataArray.interp:20: WARNING: Inline strong start-string without end-string.
/home/vsts/work/1/s/xarray/core/dataarray.py:docstring of xarray.DataArray.interpolate_na:8: WARNING: Definition list ends without a blank line; unexpected unindent.
Sphinx parallel build error:
RuntimeError: Non Expected exception in `/home/vsts/work/1/s/doc/io.rst` line 388
##[error]The operation was canceled.
```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,481110823
https://github.com/pydata/xarray/issues/2511#issuecomment-522986699,https://api.github.com/repos/pydata/xarray/issues/2511,522986699,MDEyOklzc3VlQ29tbWVudDUyMjk4NjY5OQ==,13190237,2019-08-20T12:15:18Z,2019-08-20T18:52:49Z,CONTRIBUTOR,"Even though the example from above does work, sadly, the following does not:
``` python
import xarray as xr
import dask.array as da
import numpy as np
da = xr.DataArray(np.random.rand(3*4*5).reshape((3,4,5))).chunk(dict(dim_0=1))
idcs = da.argmax('dim_2')
da[dict(dim_2=idcs)]
```
results in
``` python
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in
----> 1 da[dict(dim_2=idcs)]
~/src/xarray/xarray/core/dataarray.py in __getitem__(self, key)
604 else:
605 # xarray-style array indexing
--> 606 return self.isel(indexers=self._item_key_to_dict(key))
607
608 def __setitem__(self, key: Any, value: Any) -> None:
~/src/xarray/xarray/core/dataarray.py in isel(self, indexers, drop, **indexers_kwargs)
986 """"""
987 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, ""isel"")
--> 988 ds = self._to_temp_dataset().isel(drop=drop, indexers=indexers)
989 return self._from_temp_dataset(ds)
990
~/src/xarray/xarray/core/dataset.py in isel(self, indexers, drop, **indexers_kwargs)
1901 indexes[name] = new_index
1902 else:
-> 1903 new_var = var.isel(indexers=var_indexers)
1904
1905 variables[name] = new_var
~/src/xarray/xarray/core/variable.py in isel(self, indexers, drop, **indexers_kwargs)
984 if dim in indexers:
985 key[i] = indexers[dim]
--> 986 return self[tuple(key)]
987
988 def squeeze(self, dim=None):
~/src/xarray/xarray/core/variable.py in __getitem__(self, key)
675 array `x.values` directly.
676 """"""
--> 677 dims, indexer, new_order = self._broadcast_indexes(key)
678 data = as_indexable(self._data)[indexer]
679 if new_order:
~/src/xarray/xarray/core/variable.py in _broadcast_indexes(self, key)
532 if isinstance(k, Variable):
533 if len(k.dims) > 1:
--> 534 return self._broadcast_indexes_vectorized(key)
535 dims.append(k.dims[0])
536 elif not isinstance(k, integer_types):
~/src/xarray/xarray/core/variable.py in _broadcast_indexes_vectorized(self, key)
660 new_order = None
661
--> 662 return out_dims, VectorizedIndexer(tuple(out_key)), new_order
663
664 def __getitem__(self, key):
~/src/xarray/xarray/core/indexing.py in __init__(self, key)
460 raise TypeError(
461 ""unexpected indexer type for {}: {!r}"".format(
--> 462 type(self).__name__, k
463 )
464 )
TypeError: unexpected indexer type for VectorizedIndexer: dask.array
```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,374025325
https://github.com/pydata/xarray/pull/3221#issuecomment-522237633,https://api.github.com/repos/pydata/xarray/issues/3221,522237633,MDEyOklzc3VlQ29tbWVudDUyMjIzNzYzMw==,13190237,2019-08-17T13:38:15Z,2019-08-17T13:38:15Z,CONTRIBUTOR,"Hmm, seems like I broke the docs somehow... I someone could advice me how to fix? Thanks!","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,481110823
https://github.com/pydata/xarray/pull/3221#issuecomment-521918496,https://api.github.com/repos/pydata/xarray/issues/3221,521918496,MDEyOklzc3VlQ29tbWVudDUyMTkxODQ5Ng==,13190237,2019-08-16T07:41:14Z,2019-08-16T07:41:34Z,CONTRIBUTOR,"> This will also need a note in `whats-new.rst` and a note in `io.rst`, perhaps under ""Writing encoded data""
Sure, I'll add that when we are happy with the code and tests!
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,481110823
https://github.com/pydata/xarray/issues/2511#issuecomment-498178025,https://api.github.com/repos/pydata/xarray/issues/2511,498178025,MDEyOklzc3VlQ29tbWVudDQ5ODE3ODAyNQ==,13190237,2019-06-03T09:13:49Z,2019-06-03T09:13:49Z,CONTRIBUTOR,As of version 0.12 indexing with dask arrays works out of the box... I think this can be closed now.,"{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,374025325
https://github.com/pydata/xarray/issues/2511#issuecomment-433304954,https://api.github.com/repos/pydata/xarray/issues/2511,433304954,MDEyOklzc3VlQ29tbWVudDQzMzMwNDk1NA==,13190237,2018-10-26T06:48:54Z,2018-10-26T06:48:54Z,CONTRIBUTOR,"It seem's working fine with the following change but it has a lot of dublicated code...
```
diff --git a/xarray/core/indexing.py b/xarray/core/indexing.py
index d51da471..9fe93581 100644
--- a/xarray/core/indexing.py
+++ b/xarray/core/indexing.py
@@ -7,6 +7,7 @@ from datetime import timedelta
import numpy as np
import pandas as pd
+import dask.array as da
from . import duck_array_ops, nputils, utils
from .pycompat import (
@@ -420,6 +421,19 @@ class VectorizedIndexer(ExplicitIndexer):
'have different numbers of dimensions: {}'
.format(ndims))
k = np.asarray(k, dtype=np.int64)
+ elif isinstance(k, dask_array_type):
+ if not np.issubdtype(k.dtype, np.integer):
+ raise TypeError('invalid indexer array, does not have '
+ 'integer dtype: {!r}'.format(k))
+ if ndim is None:
+ ndim = k.ndim
+ elif ndim != k.ndim:
+ ndims = [k.ndim for k in key
+ if isinstance(k, (np.ndarray) + dask_array_type)]
+ raise ValueError('invalid indexer key: ndarray arguments '
+ 'have different numbers of dimensions: {}'
+ .format(ndims))
+ k = da.array(k, dtype=np.int64)
else:
raise TypeError('unexpected indexer type for {}: {!r}'
.format(type(self).__name__, k))
```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,374025325
https://github.com/pydata/xarray/issues/1240#issuecomment-346157283,https://api.github.com/repos/pydata/xarray/issues/1240,346157283,MDEyOklzc3VlQ29tbWVudDM0NjE1NzI4Mw==,13190237,2017-11-21T20:52:49Z,2017-11-21T20:52:49Z,CONTRIBUTOR,"@jhamman - thanks, this should be usefull...","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,204071440
https://github.com/pydata/xarray/issues/1240#issuecomment-346037822,https://api.github.com/repos/pydata/xarray/issues/1240,346037822,MDEyOklzc3VlQ29tbWVudDM0NjAzNzgyMg==,13190237,2017-11-21T14:11:36Z,2017-11-21T14:11:36Z,CONTRIBUTOR,"Hi, this is still the case for version 0.10.0.
```
arr = xr.DataArray(np.random.rand(10, 3),
...: [('time', pd.date_range('2000-01-01', periods=10)),
...: ('space', ['IA', 'IL', 'IN'])])
...:
arr.loc[arr.time[2]:arr.time[5]]
```
fails, but doing the same thing on a pandas dataframe works just fine:
```
dfr = arr.to_dataframe(name='dfr')
dfr.loc[arr.time[2]:arr.time[5]]
```
I'd really appreciate see this working on a DataArray.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,204071440
https://github.com/pydata/xarray/issues/1591#issuecomment-332122006,https://api.github.com/repos/pydata/xarray/issues/1591,332122006,MDEyOklzc3VlQ29tbWVudDMzMjEyMjAwNg==,13190237,2017-09-26T08:15:45Z,2017-09-26T08:15:45Z,CONTRIBUTOR," Ok, thanks for opening the dask issue.","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,260279615