html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/364#issuecomment-341598412,https://api.github.com/repos/pydata/xarray/issues/364,341598412,MDEyOklzc3VlQ29tbWVudDM0MTU5ODQxMg==,14136435,2017-11-03T00:40:14Z,2017-11-03T00:40:39Z,CONTRIBUTOR,"Hi, being able to pass a `pd.TimeGrouper` to `.groupby()` would be really handy. Here is my use-case and work around at the moment (`.resample()` doesn't serve my needs because I need to iterate over the groups):
```python
import pandas as pd
import xarray as xr
dates = pd.DatetimeIndex(['2017-01-01 15:00', '2017-01-02 14:00', '2017-01-02 23:00'])
da = xr.DataArray([1, 2, 3], dims=['time'], coords={'time': dates})
time_grouper = pd.TimeGrouper(freq='24h', base=15)
# digging around the source code for xr.DataArray.resample i found this
grouped = xr.core.groupby.DataArrayGroupBy(da, 'time', grouper=time_grouper)
for _, sub_da in grouped:
print(sub_da)
```
which prints:
```
array([1, 2])
Coordinates:
* time (time) datetime64[ns] 2017-01-01T15:00:00 2017-01-02T14:00:00
array([3])
Coordinates:
* time (time) datetime64[ns] 2017-01-02T23:00:00
```
Would it be possible to add a `grouper` kwarg to `.groupby()`, e.g.
```python
da.groupby('time', grouper=time_grouper)
```
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,60303760