html_url,issue_url,id,node_id,user,created_at,updated_at,author_association,body,reactions,performed_via_github_app,issue
https://github.com/pydata/xarray/issues/1075#issuecomment-373541528,https://api.github.com/repos/pydata/xarray/issues/1075,373541528,MDEyOklzc3VlQ29tbWVudDM3MzU0MTUyOA==,3698640,2018-03-15T22:21:51Z,2018-03-16T01:33:24Z,CONTRIBUTOR,"xarray==0.10.2
netCDF4==1.3.1

Just tried it again and didn't have any issues:

```python
patt = (
    'http://nasanex.s3.amazonaws.com/NEX-GDDP/BCSD/{scen}/day/atmos/{var}/' +
    'r1i1p1/v1.0/{var}_day_BCSD_{scen}_r1i1p1_{model}_{year}.nc')

def open_url_dataset(url):

    fname = os.path.splitext(os.path.basename(url))[0]
    res = requests.get(url)
    content = io.BytesIO(res.content)
    nc4_ds = netCDF4.Dataset(fname, memory=res.content)
    
    store = xr.backends.NetCDF4DataStore(nc4_ds)
    ds = xr.open_dataset(store)

    return ds

ds = open_url_dataset(url=patt.format(
        model='GFDL-ESM2G', scen='historical', var='tasmax', year=1988))
ds
```","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,186895655
https://github.com/pydata/xarray/issues/1075#issuecomment-357125148,https://api.github.com/repos/pydata/xarray/issues/1075,357125148,MDEyOklzc3VlQ29tbWVudDM1NzEyNTE0OA==,3698640,2018-01-12T02:27:27Z,2018-01-12T02:27:27Z,CONTRIBUTOR,"yes! Thanks @jhamman and @shoyer. I hadn't tried it yet, but just did. worked great!

```python
In  [1]: import xarray as xr
    ...: import requests
    ...: import netCDF4
    ...: 
    ...: %matplotlib inline

In  [2]: res = requests.get(
    ...:     'http://nasanex.s3.amazonaws.com/NEX-GDDP/BCSD/rcp45/day/atmos/tasmin/' +
    ...:     'r1i1p1/v1.0/tasmin_day_BCSD_rcp45_r1i1p1_CESM1-BGC_2073.nc')

In  [3]: res.status_code
Out [3]: 200

In  [4]: res.headers['content-type']
Out [4]: 'application/x-netcdf'

In  [5]: nc4_ds = netCDF4.Dataset('tasmin_day_BCSD_rcp45_r1i1p1_CESM1-BGC_2073', memory=res.content)

In  [6]: store = xr.backends.NetCDF4DataStore(nc4_ds)

In  [7]: ds = xr.open_dataset(store)

In  [8]: ds.tasmin.isel(time=0).plot()
    /global/home/users/mdelgado/git/public/xarray/xarray/plot/utils.py:51: FutureWarning: 'pandas.tseries.converter.register' has been moved and renamed to 'pandas.plotting.register_matplotlib_converters'. 
      converter.register()
Out [8]: <matplotlib.collections.QuadMesh at 0x2aede3c922b0>
```
![output_7_2](https://user-images.githubusercontent.com/3698640/34856943-f82619f4-f6fc-11e7-831d-f5d4032a338a.png)
```python
In  [9]: ds
Out [9]:
    <xarray.Dataset>
    Dimensions:  (lat: 720, lon: 1440, time: 365)
    Coordinates:
      * time     (time) datetime64[ns] 2073-01-01T12:00:00 2073-01-02T12:00:00 ...
      * lat      (lat) float32 -89.875 -89.625 -89.375 -89.125 -88.875 -88.625 ...
      * lon      (lon) float32 0.125 0.375 0.625 0.875 1.125 1.375 1.625 1.875 ...
    Data variables:
        tasmin   (time, lat, lon) float64 ...
    Attributes:
        parent_experiment:              historical
        parent_experiment_id:           historical
        parent_experiment_rip:          r1i1p1
        Conventions:                    CF-1.4
        institution:                    NASA Earth Exchange, NASA Ames Research C...
        institute_id:                   NASA-Ames
        realm:                          atmos
        modeling_realm:                 atmos
        version:                        1.0
        downscalingModel:               BCSD
        experiment_id:                  rcp45
        frequency:                      day
        realization:                    1
        initialization_method:          1
        physics_version:                1
        tracking_id:                    1865ff49-b20c-4268-852a-a9503efec72c
        driving_data_tracking_ids:      N/A
        driving_model_ensemble_member:  r1i1p1
        driving_experiment_name:        historical
        driving_experiment:             historical
        model_id:                       BCSD
        references:                     BCSD method: Thrasher et al., 2012, Hydro...
        DOI:                            http://dx.doi.org/10.7292/W0MW2F2G
        experiment:                     RCP4.5
        title:                          CESM1-BGC global downscaled NEX CMIP5 Cli...
        contact:                        Dr. Rama Nemani: rama.nemani@nasa.gov, Dr...
        disclaimer:                     This data is considered provisional and s...
        resolution_id:                  0.25 degree
        project_id:                     NEXGDDP
        table_id:                       Table day (12 November 2010)
        source:                         BCSD 2014
        creation_date:                  2015-01-07T19:18:31Z
        forcing:                        N/A
        product:                        output
```

","{""total_count"": 4, ""+1"": 4, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,186895655
https://github.com/pydata/xarray/issues/1075#issuecomment-347705483,https://api.github.com/repos/pydata/xarray/issues/1075,347705483,MDEyOklzc3VlQ29tbWVudDM0NzcwNTQ4Mw==,3698640,2017-11-28T23:58:41Z,2017-11-28T23:58:41Z,CONTRIBUTOR,"Thanks @shoyer. So you can download the entire object into memory and then create a file image and read that? While not a full fix, it's definitely an improvement over download-to-disk-then-read workflow!","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,186895655
https://github.com/pydata/xarray/issues/1075#issuecomment-258025809,https://api.github.com/repos/pydata/xarray/issues/1075,258025809,MDEyOklzc3VlQ29tbWVudDI1ODAyNTgwOQ==,3698640,2016-11-02T23:03:34Z,2016-11-02T23:03:34Z,CONTRIBUTOR,"Got it. :( Thanks!
","{""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,186895655